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estimates of  p and the variance of n are all n / N  
and n(1 - n~ N )  respectively (Kendal l  & Stuart, 1977, 
§ 8.8; 1979, § 19.29). If  n and N - n  are both large 
no problem arises, but if  one is small or zero these 
estimates are unreasonable .  In particular,  i f  n = 0 the 
estimate that p = 0 with perfect certainty (variance 
zero) is unacceptable.  For example,  if  N = 100, p = 
0-01, the probabi l i ty  of  observing n = 0 is practically 
equal to the probabi l i ty  of  observing the expected 
value n = 1; both are 0.36 . . . .  If  one treats the likeli- 
hood funct ion as a probabi l i ty  distr ibution and 
calculates the mean-l ikel ihood (instead of the 
maximum-l ike l ihood)  values, one obtains the more 
reasonable estimates 

( p ) = ( n + l ) / ( N + 2 )  (A1) 

(the Laplace 'rule of  succession') ,  and 

tr2(n) = N [ ( n +  1 ) / ( N  + 2 ) ] [ 1 - ( n +  2 ) / ( N  + 3)]. 
(A2) 

These lead to reasonable  values for n = 0: 

( n ) =  1 / ( N  + 2)--= N - ' ,  (A3) 

t r Z ( n ) = N ( N + I ) / ( N + Z ) ( N + 3 ) ~ - I .  (A4) 

Various neo-Bayesian estimates (Good, 1965) give 
expressions s imilar  to (A1) and (A2), with different 
numerical  values for the 'corrections'  to n and N. 

Recalculat ion of  many  of  the values of Nsg in Tables 
4 and 6 with variance given by (A2) instead of  the 

G L I M  default  value gave only minor  changes,  usual ly 
in the direction of better agreement. For most space 
groups in the monocl in ic  and or thorhombic  systems 
Nsg is not small,  and the choice of the expression for 
the variance may be more important  for the remaining  
systems. 
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Abstract  

On the basis of  a generalized symmetry m i n i m u m  
function several computer-oriented methods for 
interpreting Patterson functions and for locating the 
position of  heavy-atom fragments in crystals belong- 
ing to space groups of  higher  symmetry than P1 have 
been developed. The methods utilize cross vectors for 
finding relat ionships among the peaks of  the sym- 
metry m i n i m u m  function. This approach has the 
advantage of  suppressing false peaks of the symmetry 

m i n i m u m  function,  in locating more than one atom 
and in revealing the correct solution with greater 
probabili ty.  The heavy-atom fragment can be exten- 
ded by superposi t ion or Fourier methods.  The 
methods are valid for all space groups, are s imple to 
apply and form the basis for fully automated structure 
determination.  In contrast to many other Patterson 
methods no a priori structural informat ion is 
necessary. A few selected examples  demonstrate  the 
power of  the new version of the computer  program 
XFPS. 
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Introduction 

For direct methods the theory and computer applica- 
tions have both been developed to a high degree of 
sophistication, in contrast to Patterson-oriented ab 
initio methods where the theory was developed in the 
fifties and early sixties and relevant computer pro- 
grams were underdeveloped in the past. Only recently 
can some renaissance of Patterson methods be 
observed. The programs SHELXS (Sheldrick, 
1985a), XFPS (Pavel~fk, 1986), IMPAS (Luger & 
Fuchs, 1986), HASSP (Terwilliger, Kim & Eisenberg, 
1987) have appeared. 

For automated Patterson deconvolution by super- 
position methods reliable starting atoms are 
necessary. The symmetry minimum function, SMF 
(Simpson, Dobrott & Lipscomb, 1965), gives in gen- 
eral reliable starting atoms, particularly for higher- 
symmetry space groups in which the origin is fixed 
by space-group symmetry. For computer applications 
see Hubbard, Babich & Jacobson (1977) and Pavel~fk 
(1986). But usually only one atom can be used because 
of origin and enantiomorph ambiguities. These prob- 
lems are encountered in lower-symmetry space 
groups. For example, in P1 with more than one heavy 
atom in the asymmetric unit, the double-weighted 
cross vectors are the source of the highest peaks of 
the SMF. In P2, P2~ etc. every piece of information 
is stored in one section of the SMF and because only 
one peak can be picked out the resulting superposi- 
tion or Fourier map does not distinguish between 
enantiomorphs. Similar problems are met in struc- 
tures with heavy atoms in special or quasi-special 
positions. 

Many early experiences with superposition 
methods show that knowledge of two symmetry- 
independent atoms improves the chances for the so- 
lution of the phase problem (Rabinowitz & Kraut, 
1964; Alden, Stout, Kraut & High, 1964; High & 
Kraut, 1966; Kim, Jeffrey, Rosenstein & Corfield, 
1967). In the last paper one can also trace the use of 
symmetry considerations among cross vectors for 
finding a pair of atoms. But until recently the use of 
cross vectors for computerized interpretation of the 
Patterson function was rather infrequent. Jacobson 
& Beckman (1979) turned attention to the use of 
overlapping cross vectors for the determination of 
positions of two atoms by the superposition method. 
More recently Luger & Fuchs (1986) have utilized 
symmetry considerations among cross vectors for the 
determination of Harker vectors. Because many inter- 
atomic vectors are used, the determination of a single 
Harker vector is more reliable than the determination 
from Harker regions alone. 

In this paper several useful procedures are 
described for determining the positions of two or 
more atoms, which are based either on SMF peaks 
or are generalizations of the SMF. In all the pro- 

cedures the cross vectors play a very important role. 
The main conceptual difference between the 
approach presented here and that of Sheldrick 
(1985b) or Luger & Fuchs (1986) is that a stored 
Patterson function is used instead of the peak list 
only. Whereas Sheldrick uses the Harker peaks to 
determine one atom and Patterson peaks in general 
positions to generate other atoms, here the concept 
of equivalent origins and consideration of both enan- 
tiomorphs is applied to peaks of the SMF. These new 
procedures are part of the fully automated Patterson 
interpretation computer program XFPS (version '88). 

Procedures 

(i) Second-order symmetry minimum function, 
SOSMF 

The symmetry minimum function can be general- 
ized to use the full space of the Patterson function 
(not only the Harker regions) 

S 

H ( r ) =  ~ min P(Rs . x + L - r ) . d x  (1) 
v s = l  

where the integration is over the unit cell. In cases 
where both x and r are true atomic positions the high 
values of the Patterson function recorded make 
important contributions to the final value of the 
integral. For the sampled Patterson function we 
obtain 

G S 

H(r,)  = Y~ min P(R~ .xj + t ~ - r , )  (2) 
j = l  s = l  

where the summation is over all grid points xj of the 
Patterson function. The calculation of such a function 
is computationally expensive. A saving of computer 
time can be achieved if maxima on the SMF are fairly 
well resolved and only these maxima are considered 
as the xj and ri. In the actual procedure all maxima 
higher than the atomic number of the lightest heavy 
atom (on an atomic number scale) of the asymmetric 
part of the SMF are tested for all equivalent origins 
and enantiomorphs. Let us first introduce a definition. 
The symmetry minimum interaction, SMI, for i and 
j atoms (or potential atoms) is defined as the minimal 
value of the Patterson function (by grid-point lookup) 
for vectors formed by atom i and all symmetry- 
equivalent positions of atom j. Because of the 
necessity for origin and enantiomorph specification 
the definition is 

S 
I°e(ru)=min P{R~[q(e) .r j+to]+ts-r ,} .  (3) 

s = l  

For simple cases without specification of origin and 
enantiomorph the superscript will be omitted and for 
cases where it is necessary to consider a change 
of origin and enantiomorph for atom i also, the 
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superscript will be extended to l°~Pf(rq), q(e) defines 
the enantiomorph q(1) = 1, q(2) = -1 ,  to is an origin 
shift vector [ e.g. (0, 0, 0), (½, 0, 0 ) , . . . ,  (½, ½, ½) for P i ] .  
The SMI is taken as zero if the value of the Patterson 
function is smaller than a preselected value [ I oe (r 0) = 
0 for P ( r ) <  P l i m ] .  R s  and ts are the rotation and 
translation parts of the symmetry operator, respec- 
tively. 

The symmetry minimum function of second order 
is defined as 

N 0 E 
Q2(r/) = )-'. max max I°~(rij), 

j = l  o = 1  e = l  
j ~ i  

i = l , 2 , . . . , N  (4) 

where N is the number of peaks used, E = 1 for 
centro- and E = 2  for non-centrosymmetric space 
groups, O is the number of equivalent origins (e.g. 
for P1 O = 8 ) .  For polar space groups there is a 
one-dimensional search for maxima in the polar 
direction over all grid points. For groups like Pm it 
is difficult to apply this procedure because of the 
necessity for two-dimensional search. 

(ii) Third-order symmetry minimum function, TOSMF 

The principles outlined in the previous section can 
be extended to a simultaneous search for three atoms 
(interaction triangle) 

N N N O E O E 
Q3(ri) = ~ ~ E max max max max [le°(rij) 

i=1 j = l  k = l  o = !  e = l  p=l  f = l  
i# j ,  i ~ k , j ~ k  

+ ISP(r~k) + I°elP(rkj)]. (5) 

The sum in square brackets is accepted only if all SMI 
are greater than Plim. This search is much more power- 
ful in removing false peaks of SMF than Q2(r~) but 
also more time consuming [for SOSMF the time is 
proportional to N ( N -  1) and for TOSMF to N ( N  - 
1 ) ( N - 2 ) ] .  A tandem approach is in hand. First 
SOSMF is calculated and then the number of peaks 
is reduced, say by a factor of two, and TOSMF is 
calculated. The TOSMF is effective only in cases with 
three and more heavy atoms in the asymmetric part 
of the unit cell. 

(iii) Convergence function, CF 

The convergence routine searches for the set of 
well cross-linked peaks of the SMF (or a similar 
function), without specifying their relative origin and 
enantiomorph. For N peaks of the SMF a table of 
maximal SMI (IN) is calculated, 

O E 
l ~ = m a x m a x  I°e(ro) (fixed Plim). (6) 

o = 1  e = l  

I~  is taken as the maximal SMI among all possible 
positions of atom j (atom i is fixed). Because of P~im 

some SMIs are zero. Each peak of the SMF is charac- 
terized by 

N 

Z Z , =  ~ I N (7) 
j = l  

and by the number of nonzero I N (ni) in which atom 
i is involved. The peak with minimal value of ZZi is 
removed from the peak list (unless n~_> N - 2  for 
N<_6), N is reduced to N - 1  and n~ and ZZ~ are 
recalculated. The process is repeated until the well 
cross-linked set of peaks is found. This set can be 
used as a starting set for multiple Patterson solution 
by the cross-vector function. 

(iv) Cross-vector function, CVF 

The final deconvolution of the Patterson function 
means finding the relative positions of the peaks of 
the SMF (first, second or third order) or convergence 
function in respect of origin shift and enantiomorph 
and deletion of false peaks. The multi-solution 
approach developed here is based on cross vectors. 
The top list peaks are successively used as a pivot 
atom. The position of the pivot atom is fixed and for 
all other maxima of SMF all equivalent origins and 
enantiomorphs are considered and SMIs are found 
in the stored Patterson function. A new extended list 
of atoms (with shifted coordinates) for which the 
SMIs are nonzero is formed. One peak of SMF can 
in this way give several potential atomic positions. 
This is particularly true for non-centrosymmetric 
groups where both enantiomorphs are contained in 
the extended list and for the case with the pivot atom 
in a special (or quasi-special) position. For this new 
list a full table of SMIs is established (see Table 1). 
An atom with the highest sum of SMIs [ZZ~= 
~j I(rij)] is selected as the second atom of the solu- 
tion. This is the most critical point of the algorithm. 
All atoms with I2j < P~im are deleted from the atom 
list and also all atoms which have the same origin in 
the SMF as the second atom of the solution (the 
enantiomorph is usually fixed at this point). Then ZZ, 
are recalculated and another atom is accepted for 
solution. The process is repeated until the atom list 
is exhausted. The solution for the given pivot atom 
is characterized by Z Z M = ~ i Y . j  I 0. This criterion 
reflects both the heights of SMIs and the number of 
atoms in the fragment. The most probable solution 
is that with the highest ZZM. 

(v) Minimum translational function, MTF 

The higher-order SMF, convergence and cross vec- 
tor functions are difficult to apply to space groups 
with an infinite number of equivalent origins in one 
or two dimensions. Also a P1 structure with a single 
not too heavy atom (say Cl in an organic molecule) 
may not give the heavy atom high enough on the peak 
list to be easy identifiable. Cross vectors or double- 
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Table 1. Table of SMIs for BA VO 
P1, P5 and P8 are the peaks of the SMF having high cross vectors with pivot atom P2. Z~(Patt.) are their heights in atomic number 
units. Plim for the V-V vector is 18 (on the scale used in the table). In the process of Patterson interpretation the P5 (no. 3) peak is 
selected as the second atom of the solution. PI is eliminated and the enantiomorph is fixed by P8 because of the special coordinates 
of P5. Atomic types are assigned according to the final ZZ~. 

SMF P2 P1 P5 P8 P8 P8 P8 S t a r t i n g  F i n a l  Z i 

n u m b e r  1 2 3 4 5 6 7 Z Z i  ZZ~ ( P a t t . )  T y p e  

1 - -  129 125 45 45 25 25 394 170 51.4 Ba 
2 129 - -  0 4 4 4 4 145 0 53.6 - -  
3 125 0 - -  19 19 19 19 201 144 30.6 V(1) 
4 45 4 19 - -  0 0 0 68 64 23-5 V(2) 
5 45 4 19 0 - -  0 0 68 0 23-5 - -  
6 25 4 19 0 0 - -  0 48 0 23.5 - -  
7 25 4 19 0 0 0 - -  48 0 23.5 - -  

weighted cross vectors can be used to resolve the 
problem. A translation function based on the sym- 
metry minimum function was developed, which is 
properly weighted if atoms forming non-Harker vec- 
tors are not of the same type. Instead of searching 
for one atom in Harker regions, there is a simul- 
taneous search for two (and eventually more) atoms 
which have strong Harker and cross vectors. 

Let o . ,  r~, i = 1, 2 , . .  n be relative coordinates of a 
correctly oriented fragment. Their correct position 
with respect to symmetry elements can be established 
with the help of a search vector r: ri = r ° + r .  The 
search function has the form 

D(r)  = ~ mqn m]n rn]n rn]n Z,Z, 
I k = l  l>k i = l  j = l  mi jZkZ  l 

) 1 / 2  

x P[(Rirk+t,)-(Rir/+tj)]~ . (8) 

Z~ is the atomic number of the heaviest atom, the 
multiplicity m U for self vectors is the same as the 
multiplicity in the SMF (Pavel~.fk, 1986); for the cross 
vectors m O = 1 for non-centro- and mjj = 2 for cen- 
trosymmetric groups. Because of the symmetry of the 
Patterson function the equation can be simplified to 

D(r)  = [mqn mqn rn~n ZlZl 
I k = l  l>k j = 2  mijZkZt 

x P ( r -  Rjr+ r~,- Rjr~') / 
1/2 

3 
(9) 

For the normalized Patterson function [P (000)=  
Z 2] the heaviest atom height in the D(r)  function 

is on the atomic number scale. Though the function 
was originally developed for low-symmetry space 
groups and one non-Harker vector as a generalization 
of the Jacobson & Beckman (1979) approach, it is 
clear that it is valid for all space groups and more 
than two atoms. The combined direct method/Patter-  
son translation search of Egert & Sheldrick (1985) 
would be an efficient alternative to the MTF. 

(vi) A strategy for the automatic structure 
determination 

The strategy is decided on the basis of the unit-cell 
contents and symmetry. The calculation is started 
with a sharpened Patterson followed by the SMF 
(except for the group P1). The default sharpening is 
( l  + s 2 ) [ F ( O O O ) / ~ f i ]  2, s=(sin O)/A. For structures 
with one heavy atom in the symmetric unit and for 
structures in which two coordinates are not fixed by 
space-group symmetry (e.g. Pc) one heavy atom is 
selected on the basis of the R(E) criterion from the 
top list peaks. By trial and error the functional form 
was settled at 

R ( E ) = ( ~. I IEo]2-O'65~,Q/ ~,N - IEcI2,) / (~ IEo] 2) 

(10) 

where 
Q N 

i = 1  i = 1  

and Q is the number of unknown and N is the total 
number of atoms in the unit cell. All reflections with 
Eo > 0.3 are included. For the other structures the 
SOSMF and CVF are used for determination of the 
heavy-atom positions. The heavy atoms form the 
input for atomic minimum superposition. The CVF 
without equivalent origin shifts is used as the 'filter- 
ing' function if superposition was started only with 
one heavy atom in multiple-heavy-atom structures. 
This may resolve enantiomorph or pseudosymmetry 
problems. The procedure is finished with weighted 
2Fo-Fc synthesis. In space group P1 a Patterson 
vector is used for the minimum superposition and the 
structure is completed by repeated Fourier syntheses. 

If this simple strategy fails the strategy should be 
decided by the crystallographer, but the single job 
determination can also be used. An asymmetric part 
of the unit cell is selected automatically for Patterson, 
SMF, superposition or Fourier map for groups up to 
orthorhombic. For higher-symmetry groups the asym- 
metric part is derived from an appropriate orthorhom- 
bic or monoclinic subgroup. 
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The main features of the XFPS computer program 
are as recently described (Pavel~ik, 1986), par- 
ticularly for Fourier, Patterson and superposition 
methods. The program has been extended by the 
procedures described in this paper. Now there is no 
limit on the number of symmetry operations and the 
number of scattering-factor curves included in the 
program has been extended to 80. The program-user 
interface was improved. The program XFPS is avail- 
able on request. 

Test structures 

The newly developed methods have been tested on 
ten known structures of different size and complexity. 
The most important results will be briefly discussed 
to illustrate the range of possible applications. Purely 
organic structures are so far resistant to the methods 
developed here. 

BA VO 

P2~2~2a, B a V 2 O s . H 2 0 ,  Z = 4. The standard pro- 
gram test (Ulick~i, Pavel~ik & Huml, 1987). The heavy 
atoms have quasi-special positions in the SMF: Ba 
(0.10, 0.02, 0.25), V(1) (0.00, 0.00, 0.25), V(2) (0.25, 
0.33, 0.47). The highest peak of the SMF is false 
because of ambiguity in interpreting Harker vectors 
and the correct atoms have sequential numbers 2, 5, 
8. The SOSMF gave the order as 1, 3, 4. TOSMF and 
CF left only the correct peaks. The CVF starting from 
any of the prese.lection functions led to the correct 
solution. The MTF based on the Ba-V vector clearly 
gave the Ba coordinates. 

FUNG 

Pccn, C17H22C1N204PS2, Z = 8  (Vrfibel, Pavel~k, 
Kell6, Miertu~, Kone~n2~ & Lokaj, 1987). The SMF 
gave the heavy atoms as peaks 1, 2, 28, 38. The 
SOSMF started from 45 peaks gave correct peaks as 
2, 5, 6, 9 and TOSMF started from 22 peaks of SOSMF 
gave 1, 2, 3, 5. The result depends on the number of 
starting peaks. Another run with 60 peaks for SOSMF 
and 30 peaks for TOSMF gave the results 2, 4, 5, 7 
and 1, 4, 7, 9, respectively. The CVF gave the correct 
solution. The results of the convergence function 
depend critically on the number of peaks used. 

HA VE 

P2~/c, C7H15N207P , Z = 4  (Pavel~,fk & Havetta, 
1988). The SMF has two solutions for the P atom 
because of its quasi-special position (0.23, 0.25, 0.01). 
The R(E)  factor test prefers either the correct or a 
false peak depending on the number of reflections 
and the formula used. It seems that success of the 
automatic procedure depends critically on the R(E)  
factor criterion in complicated single-atom cases, and 

this aspect is open for new developments. The condi- 
tions and exact formula for calculation of the R(E)  
factor refined on the basis of this structure were found 
suitable for other test structures. A minimum transla- 
tional function with the non-Harker vector clearly 
gave the correct position for the P atom. 

VULM 

P2~2121, C18H40C1NO2, Z = 4 (Kettmann, Pavel~fk 
& Ryb~ir, 1988). The C1 atom was second on the SMF 
and the R(E)  factor was successful in revealing the 
correct position. There were no problems in the fully 
automated solution. The superposition based on the 
C1 atom was slightly more powerful than a weighted 
Fourier function in revealing light atoms. By hand 
interpretation 18 and 16 atoms respectively could be 
picked up from the 50 top peaks with the help of 
interpeak distances and angles. A degree of sharpen- 
ing of the Patterson function optimized on this struc- 
ture was incorporated as default sharpening in the 
program. 

PYOX 

P1, C14HI2CICuN206,  Z = 2 (Pavel~fk, 7.emli~ka, 
Kettmann & Kr~itsmfir-Smogrovi6, 1987). Peak 
heights of the SMF and their order in the sorted peak 
list depend a little on the grid selection and degree 
of sharpening. This is important here because Cu-Cu 
and double-weighted Cu-CI vectors are of the same 
strength. The correct peaks for the CuCL fragment 
have sequential numbers 3, 32, 34, 60, 66 in the SMF 
but their coordinates are not very accurate because 
CI-C1 vectors are near the background level. The 
SOSMF gives the order as 3, 7, 10, 32, 36 and TOSMF 
as 2, 3, 11, 23, 25. A peak (0, 0, 0) from the origin of 
the Patterson was still the first in the list. This demon- 
strates lower effectivity of SOSMF and TOSMF in 
this low-symmetry case. Experience showed that it 
may be advisable to delete the (0, 0, 0) peak from the 
list (unless one is expecting to have a heavy atom at 
the centre of symmetry). After removing this peak the 
SOSMF and TOSMF gave the correct atoms as 2, 10, 
13, 27, 28 and 1, 5, 10, 15, 39. In the automatic 
structure determination the R (E) factor was powerful 
enough to find the Cu atom among the highest peaks 
of SMF. A superposition based on the Cu atom clearly 
revealed all C1 atoms and subsequent Fourier syn- 
thesis showed the complete structure. In the auto- 
matic run the input to the program is as simple as 
this: 

PYOX. AUTOMATIC. 
HKLF 
CELL 1.5418 8.807 10.657 11-628 73.43 74.62 68.55 
UNIT 2, CU 1, CL4, O 6, N 2 C 14 H 12 
SOLV 
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The MTF based on the double-weighted Cu-C1 vector 
gave the correct position of the Cu atom and the 
trivial peak at ( rc~-rc~) /2  as top peaks. 
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Abstract 

An idea due to D. Rogers [Computing Methods in 
Crystallography (1965), edited by J. S. Rollett, pp. 
117-148. Oxford: Pergamon Press] has been devel oped 
and implemented. The method is an advantageous 
alternative to Wilson plot or K-curve scaling of 
intensity data. On the relative experimental scale the 
structure factor can be written in matrix notation 
as F ( h ) = k - ~ j f j ( h ) e x p ( 2 7 r i h T x ~ ) e x p ( - h r b ~ h ) ;  
and the squared structure-factor magnitude can 
be written as [F(h)l 2 = k -2 exp (-2hT"bh){~jf~2+ 
2~j  ~k>j~fk exp [27rihr(xj--Xk)]}, if a common, or 
average, anisotropic temperature factor is factored 
out of the atomic summations. The f~ summation 
corresponds to the Patterson origin peak, and the fjfk 
double summation to the off-origin Patterson peaks. 
A trivariate Gaussian density function, P(u) - Pmi, = 
P0 exp ( - u r p u ) ,  is fitted by least squares to the origin 
peak from a Patterson synthesis with coefficients 

2 2 I FI meas/Ejf~" Fourier inversion of the fitted Gaussian 
gives the scale and thermal parameters, k 2= 
(detp)~/2/(Tr3/2Vce, Po) and b =  (Tr2/2)p -~. The fit of 
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the parameter Pm~n is constrained by the condition 
that Pmin = -F(O00)2/(  k2 Vcen ~j Z2), and thus only P0 
and the six coefficients Pu (i < j  = 1, 2, 3) are indepen- 
dent parameters. 

Background 

One of the first steps in an X-ray crystal structure 
analysis is the estimation of the scale and overall 
temperature factor for the diffraction intensities. Over 
the years, several methods for doing this have been 
devised (Rogers, 1965, 1980; Levy, Thiessen & Brown, 
1970; Ladd, 1978; Giacovazzo, 1980; Subramanian 
& Hall, 1982; Hall & Subramanian, 1982). 

The Wilson plot 

The widely employed method of Wilson (1942) 
takes advantage of the cosine form of the product of 
the structure factor with its complex conjugate 
(Patterson, 1935). In matrix notation, 

F ( h ) = ~ f j ( s ) e x p ( - B j s 2 ) e x p ( 2 7 r i h T x j ) ,  (1) 
;t 

O 1988 International Union of Crystallography 


